
Lecture 3: Intro to Concurrent

Processing using Semaphores

• Semaphores;

• The Producer-Consumer problem;

• The Dining Philosophers problem;

• The Readers-Writers Problem:

– Readers’ Preference

– Passing the Baton

– Ballhausen’s Solution

CA463D Lecture Notes (Martin Crane 2013) 1

Semaphores
• Dekker’s algorithm solves the mutual exclusion problem on a shared

memory machine with no support from the hardware or software.

• Semaphores are a higher level concept than atomic instructions.

• They are atomic actions & usually implemented at OS level

• A semaphore S is a non-negative integer variable that has exactly

two operations defined for it:

P(S) If S > 0 then S = S-1, otherwise suspend

the process.

V(S) If there are processes suspended on this

semaphore wake one of them, else S = S + 1.

• An important point is that V(S), as it is currently defined, does not

specify which of the suspended processes to wake.

CA463D Lecture Notes (Martin Crane 2013) 2

Semaphores (cont’d): Semaphore Invariants

• The following invariants are true for semaphores:

� ≥ 0

� = �� + #� − #�

where �� is the initial value of semaphore �.

CA463D Lecture Notes (Martin Crane 2013) 3

Semaphores (cont’d): Mutual Exclusion

• With semaphores, guaranteeing mutual exclusion for

N processes is trivial:

CA463D Lecture Notes (Martin Crane 2013) 4

a semaphore to guarantee mutual exclusion among n processes

sem mutex := 1
const N := 20

process p(i := 1 to N)
do true ->

Non_critical_Section
P(mutex) # grab mutex semaphore

Critical_Section
V(mutex) # release mutex semaphore

od
end

Semaphores (cont’d): Proof for

Mutual Exclusion
• Theorem: Mutual exclusion is satisfied.

• Proof: Let #��	be the number of processes in their CS.

• We need to prove that #�� +���	
 = 1 is an invariant.

Eqn 1 : #�� = #� − #�	(from the program structure)

Eqn 2 :���	
 = 1 − #� + #�	(semaphore invariant)

Eqn 3 :���	
 = 1 − #��	(from (1) and (2))

⇒ ���	
 + #�� = 1	(from (2) and (3))

QED
CA463D Lecture Notes (Martin Crane 2013) 5

Semaphores (cont’d): Proof for

Deadlock Avoidance

• Theorem: The program cannot deadlock

• Proof: This would require all processes to be

suspended in their P(mutex) operations.

• Then ���	
 = 0	and #�� = 0	since no process is in

its CS.

• The critical section invariant just proven is :

����� + #�� = 1	

⇒ 0 + 0 = 1	 which is impossible.

CA463D Lecture Notes (Martin Crane 2013) 6

Types of Semaphores
• Defined above is a general semaphore. A binary semaphore is a

semaphore that can only take the values 0 and 1.

• Choice of which suspended process to wake gives the following

definitions:

– Blocked-set semaphore Awakens any one of the suspended

processes.

– Blocked-queue semaphore Suspended processes are kept in

FIFO & are awakened in order of

suspension. This is the type

implemented in SR.

– Busy-wait semaphore The value of the semaphore is tested

in a busy wait loop, with the test

being atomic. There may be

interleavings between loop cycles.

CA463D Lecture Notes (Martin Crane 2013) 7

Types of Semaphores: Proofs

• Theorem With busy-wait semaphores, starvation is

possible.

• Proof: Consider the following execution sequence for 2

processes.

1. P1 executes P(mutex) and enters its critical section.

2. P2 executes P(mutex), finds mutex=0 and loops.

3. P1 finishes CS, executes V(mutex), loops back and executes

P(mutex) and enters its CS.

4. P2 tests P(mutex), finds mutex=0, and loops.

CA463D Lecture Notes (Martin Crane 2013) 8

Types of Semaphores: Proofs (cont’d)
1. Theorem With blocked-queue semaphores, starvation is

impossible.

• Proof:

– If P1 is blocked on mutex there will be at most N-2 processes ahead of

P1 in the queue.

– Therefore after N-2 V(mutex) P1 will enter its critical section.

2. Theorem With blocked-set semaphores, starvation is possible

for N≥3.

• Proof:

– For 3 processes it is possible to construct an execution sequence such

that there are always 2 processes blocked on a semaphore.

– V(mutex) is required to only wake one of them, so it could always

ignore one and leave that process starved.

CA463D Lecture Notes (Martin Crane 2013) 9

The Producer-Consumer Problem
This type of problem has two types of processes:

Producers processes that, due to some internal

activity, produce data to be sent to consumers.

Consumers processes that on receipt of a data element

consume data in some internal computation.

• Could join processes synchronously, such that data is only transmitted

when producer is ready to send it & consumer is ready to receive it.

• More flexible to connect producers/consumers by a buffer (ie a queue)

• For an infinite buffer then the following invariants hold for the buffer:

#��������	 ≥ 	0

#�������� = 0 + ��_	
����� −
��_	
�����

• These invariants are exactly the same as the semaphore invariants

with a semaphore called elements and an initial value 0.

CA463D Lecture Notes (Martin Crane 2013) 10

The Producer-Consumer Problem (cont’d)
var buffer [?]:int

var in_pointer:int := 0,

out_pointer:int := 0

sem elements := 0

process producer

do true ->

buffer[in_pointer]:=produce()

in_pointer:=in_pointer+1

V(elements)

od

end

process consumer

var i:int

do true ->

P(elements)

i:=buffer[out_pointer]

out_pointer:=out_pointer+1

consume(i)

od

end

CA463D Lecture Notes (Martin Crane 2013) 11

• Can be modified for real bounded circular buffers using another

semaphore to count empty places in the buffer.

The Producer-Consumer Problem (cont’d)
const N := 100

var buffer [N]:int

var in_pointer:int := 0, out_pointer:int
:= 0

sem elements := 0

sem spaces := N

process producer

var i:int

do true ->

i := produce ()

P (spaces)

buffer [in_pointer] := i

in_pointer:=(in_pointer+1) mod N

V (elements)

od

end

process consumer

var i:int

do true ->

P (elements)

i := buffer [out_pointer]

out_pointer:=(out_pointer+1)mod N

V (spaces)

consume (i)

od

end

CA463D Lecture Notes (Martin Crane 2013) 12

• As an exercise prove the following:

(i) No deadlock, (ii) No starvation &

(iii) No data removal/appending from an empty/full buffer resp.

The Dining Philosophers Problem
• An institution hires five philosophers to

solve a difficult problem.

• Each philosopher only engages in two

activities - thinking & eating.

• Meals are taken in the diningroom

which has a table set with five plates &

five forks (or five bowls and five

chopsticks).

• In the centre of the table is a bowl of

spaghetti that is endlessly replenished.

• The philosophers, not being very

dextrous, require two forks to eat;

• Philosopher may only pick up the forks

immediately to his left right.
CA463D Lecture Notes (Martin Crane 2013) 13

Dining Philosophers (cont’d)

• For this system to operate correctly it is required that:

1. A philosopher eats only if he has two forks.

2. No two philosophers can hold the same fork

simultaneously.

3. There can be no deadlock.

4. There can be no individual starvation.

5. There must be efficient behaviour under the absence of

contention.

• This problem is a generalisation of multiple processes

accessing a set of shared resources;

– e.g. a network of computers accessing a bank of printers.

CA463D Lecture Notes (Martin Crane 2013) 14

Dining Philosophers:

First Attempted Solution
• Model each fork as a semaphore.

• Then each philosopher must wait (execute a P operation) on

both the left and right forks before eating.

CA463D Lecture Notes (Martin Crane 2013) 15

sem fork [5] := ([5] 1)
fork is array of semaphores all initialised to have value 1
process philosopher (i := 0 to 4)

do true ->
Think ()
P(fork [i]) #grab fork[i]
P(fork [(i+1) mod 5] #grab rh fork

Eat ()
V(fork [i]) #release fork[i]
V(fork [(i+1) mod 5] #and rh fork

od
end

Dining Philosphers: Solution #1
• This is called a symmetric solution since each task is identical.

• Symmetric solutions have advantages, e.g. for load-balancing.

• Can prove no fork is ever held by two philosophers since Eat() is

the CS of each fork. If #�� 	is the number of philosophers holding

fork i then we have	���� � + #�� = �

(ie either philosopher is holding the fork or sem is 1)

• Since a semaphore is non-negative then #� ≤ �.

• However, system can deadlock (i.e none can eat) when all

philosophers pick up their left forks together;

– i.e. all processes execute P(fork[i]) before P(fork[(i+1)mod 5]

• Two solutions:

– Make one philosopher take a right fork first (asymmetric solution);

– Only allow four philosophers into the room at any one time.

CA463D Lecture Notes (Martin Crane 2013) 16

Dining Philosophers: Symmetric Solution

• This solution solves the deadlock problem.

• It is also symmetric (i.e. all processes execute the same

piece of code).

CA463D Lecture Notes (Martin Crane 2013) 17

sem Room := 4
sem fork [5] := ([5] 1)
Process philosopher (i := 0 to 4)

do true ->
Think () # thinking not a CS!
P (Room)
P(fork [i])
P(fork [(i+1) mod 5]
Eat () # eating is the CS
V(fork [i])
V(fork [(i+1) mod 5]
V (Room)

od
end

Dining Philosophers: Symmetric Solution (cont’d)

Proof of No Starvation
Theorem Individual starvation cannot occur.

• Proof:

– For a process to starve it must be forever blocked on one of the

three semaphores, Room, fork [i] or fork [(i+1) mod 5].

a) Room semaphore

– If the semaphore is a blocked-queue semaphore then

process i is blocked only if Room is 0 indefinitely.

– Requires other 4 philosophers to be blocked on their left

forks, since if one of them can get two forks he will finish,

put down the forks and signal Room (by V(Room)).

– So this case will follow from the fork[i] case.

CA463D Lecture Notes (Martin Crane 2013) 18

Dining Philosophers: Symmetric Solution (cont’d)

Proof of No Starvation
b) fork[i] semaphore

– If philosopher i is blocked on his left fork, then philosopher i-1

must be holding his right fork.

– Therefore he is eating or signalling he is finished with his left fork,

– So will eventually release his right fork (ie philosopher i’s left fork).

c) fork[i+1] mod 5 semaphore

– If philosopher i is blocked on his right fork, this means that

philosopher (i+1) has taken his left fork and never released it.

– Since eating and signalling cannot block, philosopher (i+1) must

be waiting for his right fork,

– and so must all the others by induction: i+j,� ≤ i ≤ �.

– But with Room semaphore invariant only 4 can be in the room,

– So philosopher i cannot be blocked on his right fork.
CA463D Lecture Notes (Martin Crane 2013) 19

The Readers-Writers Problem

• Two kinds of processes, readers and writers, share a DB.

• Readers execute transactions that examine the DB, writers

execute transactions that examine and update the DB.

• Given that the database is initially consistent, then to

ensure that it remains consistent, a writer process must

have exclusive access.

• Any number of readers may concurrently examine the DB.

• Obviously, for a writer process, updating the DB is a CS that

cannot be interleaved with any other process.

CA463D Lecture Notes (Martin Crane 2013) 20

The Readers-Writers Problem (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 21

const M:int := 20, N:int := 5
var nr:int :=0
sem mutexR := 1
sem rw := 1

process reader (i:= 1 to M)
do true ->

P (mutexR)
nr := nr + 1
if nr = 1 -> P (rw) fi
V (mutexR)
Read_Database ()
P (mutexR)
nr := nr - 1
if nr = 0 -> V (rw) fi
V (mutexR)

od
end

process writer(i:=1 to N)
do true ->

P (rw)
Update_Database ()
V (rw)

od
end

• Called the readers’ preference solution since if some reader is accessing

the DB and a reader and a writer arrive at their entry protocols

then the readers will always have preference over the writer process.

The Readers-Writers Problem (cont’d)

• The Readers Preference Solution is not a fair one as it

always gives readers precedence over writers

• So a continual stream of readers will block any writer

process from updating the database.

• To make it fair need to use a split binary semaphore, i.e.

several semaphores with the property that sum is 0 or 1.

• We also need to count the number of suspended reader

processes and suspended writer processes.

• This technique is called passing the baton.

CA463D Lecture Notes (Martin Crane 2013) 22

Readers/Writers: Passing the Baton
const M:int := 20, N:int := 5

sem e:=1,r:=0,w:=0 #0≤(e+r+w)≤ 1

process reader (i:= 1 to M)

do true ->

P (e)

if nw > 0 ->

sr:= sr + 1; V(e); P(r)

fi

nr := nr + 1

if sr > 0 ->

sr := sr - 1; V (r)

[] sr = 0 -> V(e)

fi

Read_Database ()

P (e)

nr := nr - 1

if nr = 0 and sw > 0 ->

sw := sw - 1; V (w)

[] nr >0 or sw = 0 -> V(e)

[] sr >0 and nw = 0 -> V(r)

fi

od

end

var nr:int :=0, nw:int := 0

var sr:int:=0, sw:int:=0 # no. of
#suspended readers & writers

process writer (i:= 1 to N)

do true ->

P (e)

if nr > 0 or nw > 0 ->

sw:= sw + 1; V(e); P(w)

fi

nw := nw + 1

V (e)

Update_Database ()

P (e)

nw := nw - 1

if sr >0 -> sr:= sr-1;V(r)

[] sw >0 -> sw:= sw-1;V(w)

[] sr =0 and sw =0 -> V(e)

fi

od

end

CA463D Lecture Notes (Martin Crane 2013) 23

Readers/Writers: Passing the Baton (cont’d)

• Called ‘Passing the Baton’ because of way signalling
takes place (when a process is executing within a CS, it
holds the ‘baton’).

• When that process gets to an exit point from that CS, it
‘passes the baton’ to some other process.

• If (more than)one process is waiting for a condition
that is now true, ‘baton is passed’ to one such process,
randomly.

• If none is waiting, baton is passed to next one trying to
enter the CS for the first time, i.e. trying P(e).

CA463D Lecture Notes (Martin Crane 2013) 24

Passing the Baton (cont’d): Scenarios…

• Suppose a writer is in first….

– Any readers executing P(e) will be suspended in a FIFO queue

(sr:=sr+1)

– The writer will finish, execute P(e), decrement nw and eventually

signal a suspended (or maybe a new) reader who can then increment

nr, awake the suspended reader..

– Note that the if in SR is non-deterministic (any of the else-if arms

([]) which apply can be executed non-deterministically)

• Suppose a reader is first to grab the entry semaphore….

– More readers can be let in as there are no sr’s ([] sr=0->V(e))

– A writer can come in but is immediately suspended pending the

signal from the last reader to exit after reading the database

– Note: the if at the end of process reader is also non-deterministic

CA463D Lecture Notes (Martin Crane 2013) 25

Readers-Writers: Ballhausen’s Solution

• The idea behind this solution is one of efficiency: one reader

takes up the same space as all readers reading together.

• A semaphore access is used for readers gaining entry to the

DB, with a value initially equalling the total number of readers.

• Every time a reader accesses the DB, the value of access is

decremented and when one leaves, it is incremented.

• When a writer wants to enter the DB it will occupy all space

step by step by waiting for all old readers to leave and blocking

entry to new ones.

• The writer uses a semaphore mutex to prevent deadlock

between two writers trying to occupy half of the available

space each.

CA463D Lecture Notes (Martin Crane 2013) 26

Readers-Writers: Ballhausen’s Solution (cont’d)

CA463D Lecture Notes (Martin Crane 2013) 27

sem mutex = 1
sem access = m

process reader (i = 1 to m)
do true ->

P(access)

... reading ...

V(access)
other operations

od
end

process writer (j = 1 to n)
do true ->

P(mutex)
fa k = 1 to m ->

P(access)
af

#... writing ...

fa k = 1 to m ->
V(access)

af
other operations
V(mutex)

od
end

